Егэ по физике: теория и формулы

Содержание:

Теория к заданию 23 из ЕГЭ по физике

6.1. Основные понятия и законы квантовой физики

Фотоэффектом называется потеря телами электронов под действием света. Существует критическая длина волны (своя для каждого металла), с превышением которой фотоэффект прекращается. Т.к. эта длина волны лежит в длинноволновой области спектра, то её принято называть красной границей фотоэффекта
 Для фотоэффекта Эйнштейн привлёк представление о фотонах (квантах света), предложенное Планком для объяснения теплового излучения тел. Уравнение Эйнштейна для фотоэффекта имеет вид:
Постулаты Бора:
1) электроны движутся в атоме по стационарным орбитам, на которых они обладают энергией, но энергии не излучают
 Таких стационарных орбит в атоме несколько. Нижняя орбита называется основным состоянием атома, остальные — возбуждённым состоянием атома;
2) переходя с одной стационарной орбиты на другую, электрон испускает или поглощает квант электромагнитной энергии, чья энергия пропорциональна частоте:

6.2. Основные понятия и законы ядерной физики

 В 1932 г. советский физик Иваненко и немецкий физик Гейзенберг предложили протонно-нейтронную модель ядра атома. По этой модели ядро атома состоит из двух видов элементарных частиц — протонов и нейтронов. Так как в целом атом электрически нейтрален, то число протонов в ядре равно числу электронов в атомной оболочке. Следовательно, число протонов равно атомному номеру элемента (Z) таблицы Менделеева. Сумму числа протонов Z и числа нейтронов N называют массовым числом и обозначают A.
 Под энергией связи понимают ту энергию, которая необходима для полного расщепления ядра на отдельные нуклоны. Энергию связи атомных ядер можно рассчитать по формуле
 Величину ∆M называют дефектом масс, который определяется по формуле
где mp — масса протона, mn — масса нейтрона.
 Самопроизвольное испускание неких частиц атомами получило название радиоактивность. Было установлено, что радиоактивные элементы испускают три вида излучения. Их назвали α-, β- и γ- лучами.
 Природа α-, β- и γ- лучей различна. γ-лучи — это электромагнитные волны с очень маленькой длиной волны (от 10−8 до 10−11 см). β-лучи — это электроны, движущиеся со скоростями, близкими к скорости света. α-лучи — это поток ядер атомов гелия (дважды ионизированные атомы гелия). α-, β- и γ- лучи испускаются атомами радиоактивных элементов при их превращениях.
 Для α- и β-распада действует правило смещения: при α-распаде ядро теряет положительный заряд 2e, а масса его убывает на 4 атомных единицы. В результате элемент смещается на 2 клетки к началу периодической системы. Если α-распад претерпевает элемент X, то в результате получается элемент Y :
 При β-распаде из ядра вылетает электрон. Он символически изображается -1e, т. к. масса его очень мала. После β-распада элемент смещается на одну клетку к концу таблицы Менделеева:
 При γ-распаде заряд не меняется, масса ядра меняется ничтожно мало.
Число α-распадов
 Число β-распадов

Физика 11 класс. Все формулы и определения

Формулы 7 класс
 Формулы 8 класс
 Формулы 9 класс
 Формулы 10 класс

В пособии «Физика 11 класс. Все формулы и определения» представлено 30 тем за 11 класс.

Содержание (быстрый переход):

1 Магнитное поле и его свойства

Магнитное поле и его свойства. Опыт Ампера. Магнитное поле. Вектор магнитной индукции. Модуль вектора магнитной индукции

Сила Ампера. Сила Лоренца. Движение q в однородном магнитном поле.

Явление электромагнитной индукции (ЭМИ). Магнитный поток. Правило Ленца. Закон ЭМИ.

Самоиндукция. Проявление самоиндукции. Индуктивность. Энергия МП тока. Теория Максвелла

5 Механические колебания

Механические колебания. Условия возникновения свободных колебаний. Характеристики механических колебаний. Математический маятник. Гармонические колебания.

Фаза колебаний. Сдвиг фаз колебаний. Затухающие и вынужденные колебания

Механические волны. Причины возникновения. Продольные волны. Распространение волн в упругих средах

Колебательный контур. Электромагнитные колебания. Аналогия. Формула Томсона

Переменный ток. Активное сопротивление. Средняя мощность. Резонанс

Генерирование электроэнергии. Индукционный генератор переменного тока. Передача электроэнергии

Трансформаторы. Устройство трансформатора. Работа нагруженного трансформатора и на холостом ходу

Электромагнитные волны. Опыты Герца.

Принципы радиосвязи. Амплитудная модуляция. Детектирование. Распространение радиоволн. Радиолокация

Световые волны.

Закон отражения света. Закон преломления света

Линза. Виды линз. Оптическая сила линз. Формула тонкой линзы. Построение изображения в линзах.

Свойства световых волн. Опыты Ньютона. Интерференция света. Дифракция. Естественный свет

18 Элементы теории относительности

Элементы теории относительности. Принцип относительности. Постулаты теории. Основные следствия из теории относительности

Излучение и спектры. Виды излучений. Виды спектров. Спектральный анализ

Виды электромагнитных излучений. Инфракрасное и ультрафиолетовое излучения. Рентгеновские лучи.

Световые кванты. Фотоэффект. Законы фотоэффекта.

Теория фотоэффекта. Формула Планка. Уравнение Эйнштейна. Фотоны. Корпускулярно-волновой дуализм света.

Строение атома. Опыт Резерфорда. Планетарная модель атома и ее противоречия. Постулаты Бора.

Лазеры. Индуцированное излучение. Свойства лазерного излучения. Принцип действия лазера

25 Методы наблюдения и регистрации элементарных частиц

Методы наблюдения и регистрации элементарных частиц. Счетчик Гейгера. Камера Вильсона. Пузырьковая камера. Метод толстослойных фотоэмульсий

Явление радиоактивности. Опыт Резерфорда. Свойства излучений. Закон радиоактивного распада. Изотопы.

Строение атомного ядра. Открытие нейтрона. Модель ядра. Энергия связи атомных ядер. Ядерные реакции

Деление ядер урана. Механизм деления урана. Цепные ядерные реакции. Образование плутония

Ядерный реактор. Термоядерные реакции

30 Биологическое действие радиоактивных излучений

Биологическое действие радиоактивных излучений. Поглощенная доза излучений. Экспозиционная доза. Эквивалентная доза поглощенного излучения. Радиационные эффекты

Формулы 7 класс
 Формулы 8 класс
 Формулы 9 класс
 Формулы 10 класс

Атомная и ядерная физика

Энергия кванта электромагнитной волны (в т.ч. света) или, другими словами, энергия фотона вычисляется по формуле:

Импульс фотона:

Формула Эйнштейна для внешнего фотоэффекта (ЗСЭ):

Максимальная кинетическая энергия вылетающих электронов при фотоэффекте может быть выражена через величину задерживающего напряжение Uз и элементарный заряд е:

Существует граничная частота или длинна волны света (называемая красной границей фотоэффекта) такая, что свет с меньшей частотой или большей длиной волны не может вызвать фотоэффект. Эти значения связаны с величиной работы выхода следующим соотношением:

Второй постулат Бора или правило частот (ЗСЭ):

В атоме водорода выполняются следующие соотношения, связывающие радиус траектории вращающегося вокруг ядра электрона, его скорость и энергию на первой орбите с аналогичными характеристиками на остальных орбитах:

На любой орбите в атоме водорода кинетическая (К) и потенциальная (П) энергии электрона связаны с полной энергией (Е) следующими формулами:

Общее число нуклонов в ядре равно сумме числа протонов и нейтронов:

Дефект массы:

Энергия связи ядра выраженная в единицах СИ:

Энергия связи ядра выраженная в МэВ (где масса берется в атомных единицах):

Формула альфа-распада:

Формула бета-распада:

Закон радиоактивного распада:

Ядерные реакции

Для произвольной ядерной реакции описывающейся формулой вида:

Выполняются следующие условия:

Энергетический выход такой ядерной реакции при этом равен:

Механика

Кинематика

Равноускоренное движение:    
Ускорение: `a=(v-v_0)/t`  
Скорость: `v=v_0+at`  
Путь, пройденный телом: `S=v_0t+(at^2)/2` Три варианта формулы
  `S=(v^2-v_0^2)/(2a)`  
  `S=(v+v_0)/2t`  
`v(t)=S'(t)`    
`a(t)=v'(t)=S»(t)`    
Тело брошено под углом к горизонту:    
Горизонтальная проекция скорости: `v_x=v_0*cosalpha=const` Горизонтальная скорость постоянна
Вертикальная проекция скорости: `v_y=v_0*sinalpha` Вертикальная скорость меняется с ускорением `g`
Движение по окружности:  
Центростремительное ускорение: `a_(цс)=v^2/R=omega^2R`
Угловая скорость: `omega=(Deltavarphi)/(Deltat)=(2pi)/T=2pinu`
Связь линейной и угловой скоростей: `v=omegaR`

Динамика

Плотность: `rho=m/V`  
Второй закон Ньютона: `vec F=mvec a` где `vec F` — равнодействующая всех приложенных сил
Гравитационное притяжение: `F=G(m_1m_2)/R^2`  
1-я космическая скорость: `v_I=sqrt(gR)=sqrt((GM)/R)`  
2-я космическая скорость: `v_(II)=sqrt(2)*v_I`  
Закон Гука: `F=-kx`  
Сила трения: `F_(тр)=muN`  
Давление: `p=F/S`  

Статика

Момент силы: `M=F*l`  
Условие равновесия: `{(M_1+M_2+…=0),(vec F_1+vec F_2+…=0):}` Моменты «по часовой стрелке» берём со знаком плюс, моменты «против часовой» берём с минусом
Правило рычага: `F_1*l_1=F_2*l_2` это частный случай условия равновесия
Давление жидкости: `p=rhogh`  
Сила Архимеда: `F_A=rho_жgV_т`  

Импульс и энергия

Импульс: `vec p=mvec v`
Изменение импульса: `Deltavec p=vec FDeltat`
Работа силы: `A=F*l*cosalpha`
Мощность: `P=A/t`
КПД: `eta=A_(полезная)/A_(затраченная)`
Кинетическая энергия: `E_к=(mv^2)/2`
Потенциальная энергия тяжести: `E_п=mgh`
Потенциальная энергия пружины: `E_п=(kx^2)/2`

Механические колебания и волны

`x(t)=Asin(omegat+varphi_0)`  
`v(t)=x'(t)=Aomegacos(omegat+varphi_0)`  
`a(t)=v'(t)=-Aomega^2sin(omegat+varphi_0)`  
Период колебаний: `T=1/nu=(2pi)/omega`
Период математического маятника: `T=2pisqrt(l/g)`
Период пружинного маятника: `T=2pisqrt(m/k)`
Скорость волны: `v=lambdanu`

Что такое масса?

  • Главная
  • Справочник
  • Единицы измерений
  • Масса и вес
  • Что такое масса?
  • Виды массы
  • Масса элементарных частиц

Масса

— физическая величина, неотделимо присущая материи и определяющая её инерционные, энергетические и гравитационные свойства. В классической физике строго подчинена закону сохранения, на основе которого строится классическая механика. В квантовой механике — особая форма энергии и, в таком виде, также предмет закона сохранения (массы-энергии).

Масса обозначается латинской буквой m

Единицей измерения массы в системе СИ является килограмм. В гауссовой системе масса измеряется в граммах. В атомной физике принято приравнивать массу к атомной единице массы, в физике твердого тела — к массе электрона, в физике высоких энергий массу измеряют в электронвольтах. Кроме этих единиц существует огромное количество исторических единиц массы, сохранившихся в отдельных сферах использования: фунт, унция, карат, тонна и тому подобное. В астрономии единицей для сравнения масс небесных тел служит масса Солнца.

Массой тела называется физическая величина, характеризующая его инерционные и гравитационные свойства.

В классической физике масса является мерой количества вещества., содержащегося в теле. Здесь справедлив закон сохранения массы: масса изолированной системы тел не меняется со временем и равна сумме составляющих ее масс тел.

В механике Ньютона массой тела называют скалярную физическую величину, которая является мерой инерционных его свойств и источником гравитационного взаимодействия. В классической физике масса всегда является положительной величиной.

Масса – аддитивная величина, что означает: масса каждой совокупности материальных точек (\( m \) ) равна сумме масс всех отдельных частей системы (\( m_i \))

\

В классической механике считают:

  • масса тела не является зависимой от движения тела, от воздействия других тел, расположения тела;
  • выполняется закон сохранения массы: масса замкнутой механической системы тел неизменна во времени.

Как мера инертности тела, масса входит во второй закон Ньютона, записанный в упрощенном (для случая постоянной массы) виде:

\

где \( a \) — ускорение, а \( F \) — сила, что действует на тело

Виды массы

Строго говоря, существует две различные величины, которые имеют общее название «масса»:

  • Инертная масса характеризует способность тела сопротивляться изменению состояния его движения под действием силы. При условии, что сила одинакова, объект с меньшей массой легче изменяет состояние движения, чем объект с большей массой. Инертная масса фигурирует в упрощенной форме второго закона Ньютона, а также в формуле для определения импульса тела в классической механике.
  • Гравитационная масса характеризует интенсивность взаимодействия тела с гравитационным полем. Она фигурирует в ньютоновском законе всемирного тяготения.

Хотя инертная масса и гравитационная масса является концептуально разными понятиями, все известные на сегодняшний день эксперименты свидетельствуют, что эти две массы пропорциональны между собой. Это позволяет построить систему единиц так, чтобы единица измерения всех трех масс была одна и та же, и все они были равны между собой. Практически все системы единиц построены по этому принципу.

В общей теории относительности инертная и гравитационная массы считаются полностью эквивалентными.

Инертность — свойство различных материальных объектов приобретать разные ускорения при одинаковых внешних воздействиях со стороны других тел. Присуща разным телам в разной степени. Свойство инертности показывает, что для изменения скорости тела необходимо время (расстояние). Чем труднее изменить скорость тела, тем оно инертнее.

Масса – скалярная величина, являющаяся мерой инертности тела при поступательном движении. (При вращательном движении — момент инерции). Чем инертнее тело, тем больше его масса. Определенная таким образом масса называется инертной (в отличие от гравитационной массы, определяющейся из закона Всемирного тяготения).

Масса элементарных частиц

Масса, вернее масса покоя, является важной характеристикой элементарных частиц. Вопрос о том, какими причинами обусловлены те значения массы частиц, наблюдаемых на опыте, является важной проблемой физики элементарных частиц

Так, например, масса нейтрона несколько больше массы протона, что обусловлено, разницей во взаимодействии кварков, из которых состоят эти частицы. Примерное равенство масс некоторых частиц позволяет объединять их в группы, трактуя как различные состояния одной общей частицы с различными значениями изотопического спина.

Масса и весМасса Физика Теория Единицы измерения

Больше интересного в телеграм @calcsbox

Электростатика

Электрический заряд может быть найден по формуле:

Линейная плотность заряда:

Поверхностная плотность заряда:

Объёмная плотность заряда:

Закон Кулона (сила электростатического взаимодействия двух электрических зарядов):

Где: k — некоторый постоянный электростатический коэффициент, который определяется следующим образом:

Напряжённость электрического поля находится по формуле (хотя чаще эту формулу используют для нахождения силы действующей на заряд в данном электрическом поле):

Принцип суперпозиции для электрических полей (результирующее электрическое поле равно векторной сумме электрических полей составляющих его):

Напряженность электрического поля, которую создает заряд Q на расстоянии r от своего центра:

Напряженность электрического поля, которую создает заряженная плоскость:

Потенциальная энергия взаимодействия двух электрических зарядов выражается формулой:

Электрическое напряжение это просто разность потенциалов, т.е. определение электрического напряжения может быть задано формулой:

В однородном электрическом поле существует связь между напряженностью поля и напряжением:

Работа электрического поля может быть вычислена как разность начальной и конечной потенциальной энергии системы зарядов:

Работа электрического поля в общем случае может быть вычислена также и по одной из формул:

В однородном поле при перемещении заряда вдоль его силовых линий работа поля может быть также рассчитана по следующей формуле:

Определение потенциала задаётся выражением:

Потенциал, который создает точечный заряд или заряженная сфера:

Принцип суперпозиции для электрического потенциала (результирующий потенциал равен скалярной сумме потенциалов полей составляющих итоговое поле):

Для диэлектрической проницаемости вещества верно следующее:

Определение электрической ёмкости задаётся формулой:

Ёмкость плоского конденсатора:

Заряд конденсатора:

Напряжённость электрического поля внутри плоского конденсатора:

Сила притяжения пластин плоского конденсатора:

Энергия конденсатора (вообще говоря, это энергия электрического поля внутри конденсатора):

Объёмная плотность энергии электрического поля:

Квантовая физика

Корпускулярно-волновой дуализм:

Энергия фотона: `Е=hnu=(hc)/lambda`
Импульс фотона: `p=h/lambda=(hnu)/c`
Уравнение фотоэффекта: `hnu=A_(вых)+(mv^2)/2`
Запирающее напряжение: `eU_(зап)=(mv^2)/2`

Постулаты Бора:

Уровнии энергии атома водорода: `E_n=(-13,6 эВ)/n^2`
Излучение и поглощение фотона при переходе между уровнями: `hnu_(mn)=|E_n-E_m|`

Ядерная физика:

Дефект массы ядра: `Deltam=Z*m_p+(A-Z)*m_n-m_(ядра)`  
`alpha`-распад: `color(white)(*)_Z^AX->_(Z-2)^(A-4)Y+_2^4He` A — массовое числоZ — зарядовое число
`beta`-распад электронный: `color(white)(*)_Z^AX->_(Z+1)^AY+_(-1)^0e` плюс к этому образуется антинейтрино
`beta`-распад позитронный: `color(white)(*)_Z^AX->_(Z-1)^AY+_(+1)^0e` плюс к этому образуется нейтрино
Закон радиоактивного распада: `N(t)=N_0*2^(-t/T)`  
См. также таблицу Менделеева с комментариями

Это список формул для ОГЭ (9 класс). Вы можете посмотреть более полный список для ЕГЭ (11 класс)

Распределение заданий по разделам курса физики

Разработчики контрольно-измерительных материалов ориентируются на школьную программу и включают в них задания из всех пройденных разделов физики. Количество упражнений чаще всего зависит от объема материала, количества изученных тем и времени, затраченного на их освоение. Таблица ниже демонстрирует, как представлены разные разделы дисциплины в КИМ.

Раздел физики Число заданий
Вся работа Первая часть Вторая часть
Механика 9–11 7–9 2
Молекулярная физика 7–8 5–6 2
Электродинамика 9–11 6–8 3
Квантовая физика и элементы астрофизики 5–6 4–5 1
Всего 32 24 8

Если говорить о том, что требуется от учащихся для выполнения тех или иных заданий, то здесь ситуация выглядит так:

  • на проверку знания и понимания основных физических законов, величин, постулатов, понятий и принципов направлено 11 упражнений из первой части;
  • еще 11 заданий из первой части предполагают умение участников ЕГЭ описывать и объяснять свойства тел, физические явления и результаты экспериментов, а также приводить конкретные примеры использования знаний по физике на практике;
  • 2 упражнения первой части посвящены способности отличать научную гипотезу от теории, а также умению делать правильные выводы из проведенного эксперимента;
  • все 8 заданий второй части КИМ направлены на умение решать физические задачи;
  • в некоторых вариантах также может быть задание на способность применить полученные умения и знания в жизни.

В экзаменационную работу включают вопросы с разным уровнем сложности. 21 задание базового уровня трудности – на проверку владения основными понятиями и законами. 7 усложненных упражнений, помимо основных теоретических понятий, требуют умения решать задачи с использованием 1-2 основных понятий по физике из конкретной темы. Для выполнения 4 наиболее трудных заданий участнику необходимо знать все формулы по физике для ЕГЭ, поскольку эти задачи находятся на стыке двух, а то и трех разделов дисциплины.

Оптика

Прохождение границы двух сред:

Закон отражения: `alpha=gamma`
Показатель преломления: `n=c/v`
Закон преломления: `sinalpha/sinbeta=n_2/n_1`
  `nu_1=nu_2`
  `n_1lambda_1=n_2lambda_2`

Линзы:

Оптическая сила линзы: `D=1/F` где F — фокусное расстояние
Формула тонкой линзы: `1/F=1/d+1/f` где d — расстояние от линзы до предмета, f — от линзы до изображения
Каждое слагаемое может входить в формулу со знаком плюс или минус:`+1/F` для собирающей линзы`-1/F` для рассеивающей линзы
`+1/d` для действительного предмета`-1/d` для мнимого предмета (построенного другой оптической системой)`+1/f` для действительного изображения`-1/f` для мнимого изображения
Линейное увеличение: `Г=h/H=f/d` где H — высота предмета, h — высота изображения

Волновая оптика:

Условие максимумов интерференции: `Deltad=klambda,   kinZZ`
Условие минимумов интерференции: `Deltad=(2k+1)lambda/2,   kinZZ`
Формула дифракционной решётки: `dsinvarphi=klambda,   kinZZ`

Динамика

Законы Ньютона

Первый закон Ньютона
Второй закон Ньютона
Третий закон Ньютона
Закон Гука
Закон всемирного тяготения
Гравитационная постоянная
Сила тяжести
Ускорение свободного падения

  • вблизи поверхности Земли (g0);
  • на высоте (h) от поверхности Земли (gh).

Вес покоящихся и движущихся тел

Силы трения

Трение покоя

Трение скольжения
Коэффициент тренияДвижение тела под действием силы трения
Движение тела под действием нескольких сил
Движение тела по наклонной плоскости
Движение связанных тел через неподвижный блок

Законы сохранения в механике

Импульс тела
Импульс силы
Закон сохранения импульса
Механическая работа силы
Теорема о кинетической энергии
Потенциальная энергия поднятого телаРабота силы тяжестиПотенциальная энергия деформированного тела
Закон сохранения полной механической энергии

Колебания

Уравнение описывающее физические системы способные совершать гармонические колебания с циклической частотой ω:

Решение предыдущего уравнения является уравнением движения для гармонических колебаний и имеет вид:

Период колебаний вычисляется по формуле:

Частота колебаний:

Циклическая частота колебаний:

Зависимость скорости от времени при гармонических механических колебаниях выражается следующей формулой:

Максимальное значение скорости при гармонических механических колебаниях:

Зависимость ускорения от времени при гармонических механических колебаниях:

Максимальное значение ускорения при механических гармонических колебаниях:

Циклическая частота колебаний математического маятника рассчитывается по формуле:

Период колебаний математического маятника:

Циклическая частота колебаний пружинного маятника:

Период колебаний пружинного маятника:

Максимальное значение кинетической энергии при механических гармонических колебаниях задаётся формулой:

Максимальное значение потенциальной энергии при механических гармонических колебаниях пружинного маятника:

Взаимосвязь энергетических характеристик механического колебательного процесса:

Энергетические характеристики и их взаимосвязь при колебаниях в электрическом контуре:

Период гармонических колебаний в электрическом колебательном контуре определяется по формуле:

Циклическая частота колебаний в электрическом колебательном контуре:

Зависимость заряда на конденсаторе от времени при колебаниях в электрическом контуре описывается законом:

Зависимость электрического тока протекающего через катушку индуктивности от времени при колебаниях в электрическом контуре:

Зависимость напряжения на конденсаторе от времени при колебаниях в электрическом контуре:

Максимальное значение силы тока при гармонических колебаниях в электрическом контуре может быть рассчитано по формуле:

Максимальное значение напряжения на конденсаторе при гармонических колебаниях в электрическом контуре:

Переменный ток характеризуется действующими значениями силы тока и напряжения, которые связаны с амплитудными значениями соответствующих величин следующим образом. Действующее значение силы тока:

Действующее значение напряжения:

Мощность в цепи переменного тока:

Трансформатор

Если напряжение на входе в трансформатор равно U1, а на выходе U2, при этом число витков в первичной обмотке равно n1, а во вторичной n2, то выполняется следующее соотношение:

Коэффициент трансформации вычисляется по формуле:

Если трансформатор идеальный, то выполняется следующее соотношение (мощности на входе и выходе равны):

В неидеальном трансформаторе вводится понятие КПД:

Волны

Длина волны может быть рассчитана по формуле:

Разность фаз колебаний двух точек волны, расстояние между которыми l:

Скорость электромагнитной волны (в т.ч. света) в некоторой среде:

Скорость электромагнитной волны (в т.ч. света) в вакууме постоянна и равна с = 3∙108 м/с, она также может быть вычислена по формуле:

Скорости электромагнитной волны (в т.ч. света) в среде и в вакууме также связаны между собой формулой:

При этом показатель преломления некоторого вещества можно рассчитать используя формулу:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector