Как подготовиться к егэ по физике? структура экзамена
Содержание:
- Распределение заданий по разделам курса физики
- Работайте с буквами, а не цифрами
- Какие калькуляторы разрешены для ЕГЭ и ОГЭ
- Колебания
- Квантовая физика
- Кинематика
- Оптика
- Основы специальной теории относительности (СТО)
- Молекулярная физика и термодинамика
- Что такое масса?
- Подготовка к ЕГЭ по физике
- Список лучших разрешенных моделей калькуляторов
- Тепловые явления
- Атомная и ядерная физика
- Словарь ЕГЭ по физике
- Термодинамика
- Особенности ЕГЭ по физике: на что обратить внимание?
- Формулы по физике для ЕГЭ
Распределение заданий по разделам курса физики
Разработчики контрольно-измерительных материалов ориентируются на школьную программу и включают в них задания из всех пройденных разделов физики. Количество упражнений чаще всего зависит от объема материала, количества изученных тем и времени, затраченного на их освоение. Таблица ниже демонстрирует, как представлены разные разделы дисциплины в КИМ.
Раздел физики | Число заданий | ||
---|---|---|---|
Вся работа | Первая часть | Вторая часть | |
Механика | 9–11 | 7–9 | 2 |
Молекулярная физика | 7–8 | 5–6 | 2 |
Электродинамика | 9–11 | 6–8 | 3 |
Квантовая физика и элементы астрофизики | 5–6 | 4–5 | 1 |
Всего | 32 | 24 | 8 |
Если говорить о том, что требуется от учащихся для выполнения тех или иных заданий, то здесь ситуация выглядит так:
- на проверку знания и понимания основных физических законов, величин, постулатов, понятий и принципов направлено 11 упражнений из первой части;
- еще 11 заданий из первой части предполагают умение участников ЕГЭ описывать и объяснять свойства тел, физические явления и результаты экспериментов, а также приводить конкретные примеры использования знаний по физике на практике;
- 2 упражнения первой части посвящены способности отличать научную гипотезу от теории, а также умению делать правильные выводы из проведенного эксперимента;
- все 8 заданий второй части КИМ направлены на умение решать физические задачи;
- в некоторых вариантах также может быть задание на способность применить полученные умения и знания в жизни.
В экзаменационную работу включают вопросы с разным уровнем сложности. 21 задание базового уровня трудности – на проверку владения основными понятиями и законами. 7 усложненных упражнений, помимо основных теоретических понятий, требуют умения решать задачи с использованием 1-2 основных понятий по физике из конкретной темы. Для выполнения 4 наиболее трудных заданий участнику необходимо знать все формулы по физике для ЕГЭ, поскольку эти задачи находятся на стыке двух, а то и трех разделов дисциплины.
Работайте с буквами, а не цифрами
Оформление задач, у которых проверяется решение, должно иметь результат в виде большой формулы с буквами. Возьмите за правило не подставлять числа до последнего шага.
В чём реальная польза букв?
- Точность. Если разделить на калькуляторе 1 на 3, а потом умножить на 6, то получится не 2, а 1,999999998. В ЕГЭ часто ответы получаются красивыми, поэтому дробь с периодом может вызвать лишние сомнения и расфокусировку.
- Возможность проверить размерность. Да-да, так просили делать в 7-м классе. 2 минуты на проверку размерности – выгодное вложение времени для увеличения вероятности правильного ответа большой задачи.
- Экономия времени. Если ответ получился в виде дроби, то она может сократиться. Это реальная экономия времени на подсчёт численного ответа.
Какие калькуляторы разрешены для ЕГЭ и ОГЭ
После выяснения вопроса, какие устройства для расчетов можно принести на школьный экзамен, родители иногда встают перед вопросом, как выглядит непрограммируемый калькулятор для ЕГЭ. В этом нет ничего удивительного. Если служебные обязанности человека далеки от регулярных подсчетов сложных математических функций, то и необходимости в использовании инженерного счетного устройства у него нет. Поэтому очень многие покупатели не знают, как отличить программируемый калькулятор от непрограммируемого.
Научный калькулятор может иметь до нескольких сот функций, но главные его признаки, без которых он превращается в простые счеты:
- наличие тригонометрических функций;
- подсчет логарифмов;
- возможность извлечения корня и возведения в степень с любым показателем (не только квадрат и куб);
- наличие некоторых констант: чисел «пи», «е» и др.
Исходя из написанного, официальный список разрешенных калькуляторов на ЕГЭ по физике и другим предметам неполон, поскольку многие счетные машинки обладают указанными качествами, без функций связи или программирования. Поэтому можно рассчитывать, что купленные калькуляторы, отвечающие указанным характеристикам, будут допущены к экзамену.
Колебания
Уравнение описывающее физические системы способные совершать гармонические колебания с циклической частотой ω:
Решение предыдущего уравнения является уравнением движения для гармонических колебаний и имеет вид:
Период колебаний вычисляется по формуле:
Частота колебаний:
Циклическая частота колебаний:
Зависимость скорости от времени при гармонических механических колебаниях выражается следующей формулой:
Максимальное значение скорости при гармонических механических колебаниях:
Зависимость ускорения от времени при гармонических механических колебаниях:
Максимальное значение ускорения при механических гармонических колебаниях:
Циклическая частота колебаний математического маятника рассчитывается по формуле:
Период колебаний математического маятника:
Циклическая частота колебаний пружинного маятника:
Период колебаний пружинного маятника:
Максимальное значение кинетической энергии при механических гармонических колебаниях задаётся формулой:
Максимальное значение потенциальной энергии при механических гармонических колебаниях пружинного маятника:
Взаимосвязь энергетических характеристик механического колебательного процесса:
Энергетические характеристики и их взаимосвязь при колебаниях в электрическом контуре:
Период гармонических колебаний в электрическом колебательном контуре определяется по формуле:
Циклическая частота колебаний в электрическом колебательном контуре:
Зависимость заряда на конденсаторе от времени при колебаниях в электрическом контуре описывается законом:
Зависимость электрического тока протекающего через катушку индуктивности от времени при колебаниях в электрическом контуре:
Зависимость напряжения на конденсаторе от времени при колебаниях в электрическом контуре:
Максимальное значение силы тока при гармонических колебаниях в электрическом контуре может быть рассчитано по формуле:
Максимальное значение напряжения на конденсаторе при гармонических колебаниях в электрическом контуре:
Переменный ток характеризуется действующими значениями силы тока и напряжения, которые связаны с амплитудными значениями соответствующих величин следующим образом. Действующее значение силы тока:
Действующее значение напряжения:
Мощность в цепи переменного тока:
Трансформатор
Если напряжение на входе в трансформатор равно U1, а на выходе U2, при этом число витков в первичной обмотке равно n1, а во вторичной n2, то выполняется следующее соотношение:
Коэффициент трансформации вычисляется по формуле:
Если трансформатор идеальный, то выполняется следующее соотношение (мощности на входе и выходе равны):
В неидеальном трансформаторе вводится понятие КПД:
Волны
Длина волны может быть рассчитана по формуле:
Разность фаз колебаний двух точек волны, расстояние между которыми l:
Скорость электромагнитной волны (в т.ч. света) в некоторой среде:
Скорость электромагнитной волны (в т.ч. света) в вакууме постоянна и равна с = 3∙108 м/с, она также может быть вычислена по формуле:
Скорости электромагнитной волны (в т.ч. света) в среде и в вакууме также связаны между собой формулой:
При этом показатель преломления некоторого вещества можно рассчитать используя формулу:
Квантовая физика
Корпускулярно-волновой дуализм:
Энергия фотона: | `Е=hnu=(hc)/lambda` |
Импульс фотона: | `p=h/lambda=(hnu)/c` |
Уравнение фотоэффекта: | `hnu=A_(вых)+(mv^2)/2` |
Запирающее напряжение: | `eU_(зап)=(mv^2)/2` |
Постулаты Бора:
Уровнии энергии атома водорода: | `E_n=(-13,6 эВ)/n^2` |
Излучение и поглощение фотона при переходе между уровнями: | `hnu_(mn)=|E_n-E_m|` |
Ядерная физика:
Дефект массы ядра: | `Deltam=Z*m_p+(A-Z)*m_n-m_(ядра)` | |
`alpha`-распад: | `color(white)(*)_Z^AX->_(Z-2)^(A-4)Y+_2^4He` | A — массовое числоZ — зарядовое число |
`beta`-распад электронный: | `color(white)(*)_Z^AX->_(Z+1)^AY+_(-1)^0e` | плюс к этому образуется антинейтрино |
`beta`-распад позитронный: | `color(white)(*)_Z^AX->_(Z-1)^AY+_(+1)^0e` | плюс к этому образуется нейтрино |
Закон радиоактивного распада: | `N(t)=N_0*2^(-t/T)` | |
См. также таблицу Менделеева с комментариями |
Это список формул для ОГЭ (9 класс). Вы можете посмотреть более полный список для ЕГЭ (11 класс)
Кинематика
Путь при равномерном движении:
Перемещение S (расстояние по прямой между начальной и конечной точкой движения) обычно находится из геометрических соображений. Координата при равномерном прямолинейном движении изменяется по закону (аналогичные уравнения получаются для остальных координатных осей):
Средняя скорость пути:
Средняя скорость перемещения:
Определение ускорения при равноускоренном движении:
Выразив из формулы выше конечную скорость, получаем более распространённый вид предыдущей формулы, которая теперь выражает зависимость скорости от времени при равноускоренном движении:
Средняя скорость при равноускоренном движении:
Перемещение при равноускоренном прямолинейном движении может быть рассчитано по нескольким формулам:
Координата при равноускоренном движении изменяется по закону:
Проекция скорости при равноускоренном движении изменяется по такому закону:
Скорость, с которой упадет тело падающее с высоты h без начальной скорости:
Время падения тела с высоты h без начальной скорости:
Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью v, время подъема этого тела на максимальную высоту, и полное время полета (до возвращения в исходную точку):
Формула для тормозного пути тела:
Время падения тела при горизонтальном броске с высоты H может быть найдено по формуле:
Дальность полета тела при горизонтальном броске с высоты H:
Полная скорость в произвольный момент времени при горизонтальном броске, и угол наклона скорости к горизонту:
Максимальная высота подъема при броске под углом к горизонту (относительно начального уровня):
Время подъема до максимальной высоты при броске под углом к горизонту:
Дальность полета и полное время полета тела брошенного под углом к горизонту (при условии, что полет заканчивается на той же высоте с которой начался, т.е. тело бросали, например, с земли на землю):
Определение периода вращения при равномерном движении по окружности:
Определение частоты вращения при равномерном движении по окружности:
Связь периода и частоты:
Линейная скорость при равномерном движении по окружности может быть найдена по формулам:
Угловая скорость вращения при равномерном движении по окружности:
Связь линейной и скорости и угловой скорости выражается формулой:
Связь угла поворота и пути при равномерном движении по окружности радиусом R (фактически, это просто формула для длины дуги из геометрии):
Центростремительное ускорение находится по одной из формул:
Оптика
Прохождение границы двух сред:
Закон отражения: | `alpha=gamma` | |
Показатель преломления: | `n=c/v` | |
Закон преломления: | `sinalpha/sinbeta=n_2/n_1` | |
`nu_1=nu_2` | ||
`n_1lambda_1=n_2lambda_2` |
Линзы:
Оптическая сила линзы: | `D=1/F` | где F — фокусное расстояние |
Формула тонкой линзы: | `1/F=1/d+1/f` | где d — расстояние от линзы до предмета, f — от линзы до изображения |
Каждое слагаемое может входить в формулу со знаком плюс или минус:`+1/F` для собирающей линзы`-1/F` для рассеивающей линзы `+1/d` для действительного предмета`-1/d` для мнимого предмета (построенного другой оптической системой)`+1/f` для действительного изображения`-1/f` для мнимого изображения |
||
Линейное увеличение: | `Г=h/H=f/d` | где H — высота предмета, h — высота изображения |
Волновая оптика:
Условие максимумов интерференции: | `Deltad=klambda, kinZZ` |
Условие минимумов интерференции: | `Deltad=(2k+1)lambda/2, kinZZ` |
Формула дифракционной решётки: | `dsinvarphi=klambda, kinZZ` |
Основы специальной теории относительности (СТО)
Релятивистское сокращение длины:
Релятивистское удлинение времени события:
Релятивистский закон сложения скоростей. Если два тела движутся навстречу друг другу, то их скорость сближения:
Релятивистский закон сложения скоростей. Если же тела движутся в одном направлении, то их относительная скорость:
Энергия покоя тела:
Любое изменение энергии тела означает изменение массы тела и наоборот:
Полная энергия тела:
Полная энергия тела Е пропорциональна релятивистской массе и зависит от скорости движущегося тела, в этом смысле важны следующие соотношения:
Релятивистское увеличение массы:
Кинетическая энергия тела, движущегося с релятивистской скоростью:
Между полной энергией тела, энергией покоя и импульсом существует зависимость:
Молекулярная физика и термодинамика
Молекулярная физика
Средняя кинетическая энергия молекул | `bar E_к=3/2kT` | Здесь и далее рассматриваем только идеальный одноатомный газ |
Давление газа: | `p=nkT` | |
Уравнение Менделеева-Клайперона: | `pV=nuRT` | |
Количество вещества в молях: | `nu=m/M=N/N_A` | M — молярная масса, берём её из таблицы Менделеева, не забываем переводить в кг/моль |
Внутренняя энергия: | `U=3/2nuRT` | |
Закон Дальтона для смеси: | `p=p_1+p_2+…` | |
Относительная влажность: | `varphi=p_(парц)/p_(насыщ)=rho_(парц)/rho_(насыщ)` | См. также таблицу давления и плотности насыщенного водяного пара |
Уравнение теплобаланса: | `Q_1+Q_2+Q_3+…=0` | `Q>0` в процессах, где теплота выделяется, и `Q |
Термодинамика
`Q=cmDeltaT` | где `с` — удельная теплоёмкость |
`Q=lambdam` | где `lambda` — удельная теплота плавления |
`Q=rm` | где `r` — удельная теплота парообразования |
`Q=qm` | где `q` — удельная теплота сгорания |
Первое начало термодинамики: | `Q=DeltaU+A` | |
Работа газа в любом термодинамическом процессе — это площадь под pV-графиком | `A=int_1^2pdV`(формулу запоминать не обязательно) | |
Работа в изобарном процессе: | `A=p*DeltaV` | |
Работа газа всегда связана с изменением объёма: | `Vuarr rArr A>0«Vdarr rArr A`V=const rArr A=0` | |
Работа внешних сил над газом: | `A_(внеш.сил)=-A_(газа)` | |
КПД: | `eta=A_(цикл)/Q_н=(Q_н-Q_х)/Q_н` | |
Машина Карно: | `eta=(T_н-T_х)/T_н` |
Что такое масса?
- Главная
- Справочник
- Единицы измерений
- Масса и вес
- Что такое масса?
- Виды массы
- Масса элементарных частиц
Масса
— физическая величина, неотделимо присущая материи и определяющая её инерционные, энергетические и гравитационные свойства. В классической физике строго подчинена закону сохранения, на основе которого строится классическая механика. В квантовой механике — особая форма энергии и, в таком виде, также предмет закона сохранения (массы-энергии).
Масса обозначается латинской буквой m
Единицей измерения массы в системе СИ является килограмм. В гауссовой системе масса измеряется в граммах. В атомной физике принято приравнивать массу к атомной единице массы, в физике твердого тела — к массе электрона, в физике высоких энергий массу измеряют в электронвольтах. Кроме этих единиц существует огромное количество исторических единиц массы, сохранившихся в отдельных сферах использования: фунт, унция, карат, тонна и тому подобное. В астрономии единицей для сравнения масс небесных тел служит масса Солнца.
Массой тела называется физическая величина, характеризующая его инерционные и гравитационные свойства.
В классической физике масса является мерой количества вещества., содержащегося в теле. Здесь справедлив закон сохранения массы: масса изолированной системы тел не меняется со временем и равна сумме составляющих ее масс тел.
В механике Ньютона массой тела называют скалярную физическую величину, которая является мерой инерционных его свойств и источником гравитационного взаимодействия. В классической физике масса всегда является положительной величиной.
Масса – аддитивная величина, что означает: масса каждой совокупности материальных точек (\( m \) ) равна сумме масс всех отдельных частей системы (\( m_i \))
\
В классической механике считают:
- масса тела не является зависимой от движения тела, от воздействия других тел, расположения тела;
- выполняется закон сохранения массы: масса замкнутой механической системы тел неизменна во времени.
Как мера инертности тела, масса входит во второй закон Ньютона, записанный в упрощенном (для случая постоянной массы) виде:
\
где \( a \) — ускорение, а \( F \) — сила, что действует на тело
Виды массы
Строго говоря, существует две различные величины, которые имеют общее название «масса»:
- Инертная масса характеризует способность тела сопротивляться изменению состояния его движения под действием силы. При условии, что сила одинакова, объект с меньшей массой легче изменяет состояние движения, чем объект с большей массой. Инертная масса фигурирует в упрощенной форме второго закона Ньютона, а также в формуле для определения импульса тела в классической механике.
- Гравитационная масса характеризует интенсивность взаимодействия тела с гравитационным полем. Она фигурирует в ньютоновском законе всемирного тяготения.
Хотя инертная масса и гравитационная масса является концептуально разными понятиями, все известные на сегодняшний день эксперименты свидетельствуют, что эти две массы пропорциональны между собой. Это позволяет построить систему единиц так, чтобы единица измерения всех трех масс была одна и та же, и все они были равны между собой. Практически все системы единиц построены по этому принципу.
В общей теории относительности инертная и гравитационная массы считаются полностью эквивалентными.
Инертность — свойство различных материальных объектов приобретать разные ускорения при одинаковых внешних воздействиях со стороны других тел. Присуща разным телам в разной степени. Свойство инертности показывает, что для изменения скорости тела необходимо время (расстояние). Чем труднее изменить скорость тела, тем оно инертнее.
Масса – скалярная величина, являющаяся мерой инертности тела при поступательном движении. (При вращательном движении — момент инерции). Чем инертнее тело, тем больше его масса. Определенная таким образом масса называется инертной (в отличие от гравитационной массы, определяющейся из закона Всемирного тяготения).
Масса элементарных частиц
Масса, вернее масса покоя, является важной характеристикой элементарных частиц. Вопрос о том, какими причинами обусловлены те значения массы частиц, наблюдаемых на опыте, является важной проблемой физики элементарных частиц
Так, например, масса нейтрона несколько больше массы протона, что обусловлено, разницей во взаимодействии кварков, из которых состоят эти частицы. Примерное равенство масс некоторых частиц позволяет объединять их в группы, трактуя как различные состояния одной общей частицы с различными значениями изотопического спина.
Масса и весМасса Физика Теория Единицы измерения
Больше интересного в телеграм @calcsbox
Подготовка к ЕГЭ по физике
В качестве дополнительного предмета для сдачи ЕГЭ многие ученики выбирают физику. Знание физики необходимо будущим ученым и инженерам, конструкторам и технологам. Мы предлагаем пройти тренировочный ЕГЭ по физике совершенно бесплатно, выполнив ряд тестов по основным темам школьной программы.
Наш интерактивный тренажер основан на интеллектуальной платформе Skils4u, которая позволяет довести до автоматизма ряд важных учебных навыков. С ним самостоятельная подготовка к ЕГЭ по физике будет эффективной и не займет много времени. Для выполнения одного теста требуется от 20 до 40 минут. Их можно делать все подряд или выбрать именно ту тему, которая вызывает наибольшие затруднения.
По итогам прохождения теста формируется рейтинг ученика, который может измениться после повторных тренировок. Все задания ЕГЭ по физике даны в удобной форме. Вам не потребуется писать, достаточно будет выбрать верный ответ на экране. Уникальность программы заключается в том, что она адаптируется к уровню подготовки конкретного ученика и генерирует задачи ЕГЭ по физике по возрастанию сложности.
Регулярно тренируясь, вы все меньше времени будете тратить на решение ЕГЭ по физике, привыкая к формату опроса. Формируется устойчивый учебный навык, позволяющий легко ориентироваться в сложных формулах, запоминать основные законы. При этом вы будете видеть задачи ЕГЭ по физике с ответами, чтобы исключить ошибки и сразу найти нужную информацию. Если вы ошибетесь один раз, в следующем задании будет принято верное решение.
Для получения устойчивого навыка мы рекомендуем тренироваться ежедневно. Только в этом случае дополнительная подготовка к ЕГЭ по физике будет эффективной. Рекомендуем оформить доступ к образовательной платформе Skills4u на 1 месяц, полгода или целый учебный год. Решение принимается после входного тестирования с учетом рекомендаций, предоставляемых системой. Разумеется, полная подготовка к ЕГЭ (физика) невозможна без посещения школьных занятий, но в условиях вынужденного карантина или при домашнем обучении тренажер станет незаменимым дополнением к основному курсу и позволит быстро подтянуть успеваемость и привыкнуть к правильному распределению времени на экзамене.
На образовательной платформе Skills4u проводится эффективная самостоятельная подготовка к ЕГЭ по физике по заданиям, адаптированным к уровню знаний конкретного ученика. Мы рекомендуем всем выпускникам, которые будут сдавать этот предмет, воспользоваться возможностями, которые предоставляют современные технологии. С интеллектуальным тренажером вы легко выучите все формулы и научитесь решать самые сложные задачи.
Список лучших разрешенных моделей калькуляторов
Популярными моделями, прошедшими тестирование являются:
Brauberg:
- Brauberg SC-880-N.
- Brauberg SC-980.
- Brauberg SC-850.
Сертификаты:
SC-880-N.pdf
284 Кбайта
SC-980.pdf
285 Кбайт
SC-850.pdf
374 Кбайта
Staff :
- STAFF STF-245.
- STAFF STF-165.
- STAFF STF-810.
- STAFF STF-310.
Сертификаты:
STF-245.pdf
289 Кбайт
STF-165.pdf
286 Кбайт
STF-810.pdf
287 Кбайт
STF-310.pdf
285 Кбайт
Можно пользоваться калькулятором на ЕГЭ и ОГЭ фирмы Casio:
- FX-82ESPLUS-2-WETD;
- FX-991EX-S-ET-V;
- FX-991ES PLUS-2SETD;
- FX-220PLUS-2-S.
Модели Citizen:
- SR-135N;
- SR-270N;
- SR-260N.
Все перечисленные торговые марки калькуляторов можно использовать на ЕГЭ и ОГЭ.
Ознакомиться с полным списком, протестированных моделей в Академии Информатизации Образования:
polnyj-spisok-kalkulyatorov-dlya-egeh-v-2021.pdf
389 Кбайт
Тепловые явления
Молекулярная физика
Средняя кинетическая энергия молекул | `bar E_к=3/2kT` | Здесь и далее рассматриваем только идеальный одноатомный газ |
Давление газа: | `p=nkT` | |
Уравнение Менделеева-Клайперона: | `pV=nuRT` | |
Количество вещества в молях: | `nu=m/M=N/N_A` | M — молярная масса, берём её из таблицы Менделеева, не забываем переводить в кг/моль |
Внутренняя энергия: | `U=3/2nuRT` | |
Закон Дальтона для смеси: | `p=p_1+p_2+…` | |
Относительная влажность: | `varphi=p_(парц)/p_(насыщ)=rho_(парц)/rho_(насыщ)` | См. также таблицу давления и плотности насыщенного водяного пара |
Уравнение теплобаланса: | `Q_1+Q_2+Q_3+…=0` | `Q>0` в процессах, где теплота выделяется, и `Q |
Термодинамика
`Q=cmDeltaT` | где `с` — удельная теплоёмкость |
`Q=lambdam` | где `lambda` — удельная теплота плавления |
`Q=rm` | где `r` — удельная теплота парообразования |
`Q=qm` | где `q` — удельная теплота сгорания |
Первое начало термодинамики: | `Q=DeltaU+A` | |
Работа газа в любом термодинамическом процессе — это площадь под pV-графиком | `A=int_1^2pdV`(формулу запоминать не обязательно) | |
Работа в изобарном процессе: | `A=p*DeltaV` | |
Работа газа всегда связана с изменением объёма: | `Vuarr rArr A>0«Vdarr rArr A`V=const rArr A=0` | |
Работа внешних сил над газом: | `A_(внеш.сил)=-A_(газа)` | |
КПД: | `eta=A_(цикл)/Q_н=(Q_н-Q_х)/Q_н` | |
Машина Карно: | `eta=(T_н-T_х)/T_н` |
Атомная и ядерная физика
Энергия кванта электромагнитной волны (в т.ч. света) или, другими словами, энергия фотона вычисляется по формуле:
Импульс фотона:
Формула Эйнштейна для внешнего фотоэффекта (ЗСЭ):
Максимальная кинетическая энергия вылетающих электронов при фотоэффекте может быть выражена через величину задерживающего напряжение Uз и элементарный заряд е:
Существует граничная частота или длинна волны света (называемая красной границей фотоэффекта) такая, что свет с меньшей частотой или большей длиной волны не может вызвать фотоэффект. Эти значения связаны с величиной работы выхода следующим соотношением:
Второй постулат Бора или правило частот (ЗСЭ):
В атоме водорода выполняются следующие соотношения, связывающие радиус траектории вращающегося вокруг ядра электрона, его скорость и энергию на первой орбите с аналогичными характеристиками на остальных орбитах:
На любой орбите в атоме водорода кинетическая (К) и потенциальная (П) энергии электрона связаны с полной энергией (Е) следующими формулами:
Общее число нуклонов в ядре равно сумме числа протонов и нейтронов:
Дефект массы:
Энергия связи ядра выраженная в единицах СИ:
Энергия связи ядра выраженная в МэВ (где масса берется в атомных единицах):
Формула альфа-распада:
Формула бета-распада:
Закон радиоактивного распада:
Ядерные реакции
Для произвольной ядерной реакции описывающейся формулой вида:
Выполняются следующие условия:
Энергетический выход такой ядерной реакции при этом равен:
Словарь ЕГЭ по физике
- Шероховатая поверхность — в задаче присутствует сила трения, её обязательно нужно учесть.
- Гладкая поверхность — означает, что в задаче можно пренебречь силой трения.
- Небольшое (маленькое) тело — тело, размерами которого в условиях данной задачи можно пренебречь.
- Лёгкая пружина, нить и т.п. — массой указанного тела можно пренебречь.
- «Пластилиновый шар, двигаясь по гладкой горизонтальной плоскости, столкнулся с покоящимся металлическим шаром и прилип к нему» — абсолютно неупругий удар, импульс сохранился, но механическая энергия — нет, часть энергии ушла в тепло или другие типы энергии.
- «Тело равномерно перемещают по горизонтальной поверхности, прикладывая к нему постоянную силу» — ключевое слово здесь «равномерно». Это означает, что, по второму закону Ньютона, сумма всех сил равна нулю.
- Теплопроводящий сосуд — означает, что при медленном перемещении поршня процесс можно считать изотермическим, так как температура содержимого успевает сравняться с температурой окружающей среды.
- «В калориметре…» — теплообменом с окружающей средой можно пренебречь.
- Однородный стержень — сделан из одного материала, масса равномерно распределена по его объёму.
- Малые колебания — амплитуда колебаний некоторой величины достаточно мала, чтобы колебания происходили по закону синуса или косинуса. При больших амплитудах колебаний эти закономерности нарушаются и перестают быть гармоническими. В частности, для математического маятника колебания можно считать малыми только в случае отклонения на небольшой угол α, такой, что sin α ≈ α.
- Шёлковая нить — шёлк является диэлектриком, поэтому данная нить не проводит электрический ток.
- Точечный источник света — источник, размерами которого можно пренебречь. Все предметы от него дают тень с чёткими границами.
- Протяжённый источник света — источник, размерами которого нельзя пренебрегать ни в коем случае. Предметы в данном случае отбрасывают тень с нечёткими границами. Её можно разделить на тень и полутень.
Перевод нужно делать каждый раз, когда вы впервые читаете задачу.
Термодинамика
Количество теплоты (энергии) необходимое для нагревания некоторого тела (или количество теплоты выделяющееся при остывании тела) рассчитывается по формуле:
Теплоемкость (С — большое) тела может быть рассчитана через удельную теплоёмкость (c — маленькое) вещества и массу тела по следующей формуле:
Тогда формула для количества теплоты необходимой для нагревания тела, либо выделившейся при остывании тела может быть переписана следующим образом:
Фазовые превращения. При парообразовании поглощается, а при конденсации выделяется количество теплоты равное:
При плавлении поглощается, а при кристаллизации выделяется количество теплоты равное:
При сгорании топлива выделяется количество теплоты равное:
Уравнение теплового баланса (ЗСЭ). Для замкнутой системы тел выполняется следующее (сумма отданных теплот равна сумме полученных):
Если все теплоты записывать с учетом знака, где «+» соответствует получению энергии телом, а «–» выделению, то данное уравнение можно записать в виде:
Работа идеального газа:
Если же давление газа меняется, то работу газа считают, как площадь фигуры под графиком в p–V координатах. Внутренняя энергия идеального одноатомного газа:
Изменение внутренней энергии рассчитывается по формуле:
Первый закон (первое начало) термодинамики (ЗСЭ):
Для различных изопроцессов можно выписать формулы по которым могут быть рассчитаны полученная теплота Q, изменение внутренней энергии ΔU и работа газа A. Изохорный процесс (V = const):
Изобарный процесс (p = const):
Изотермический процесс (T = const):
Адиабатный процесс (Q = 0):
КПД тепловой машины может быть рассчитан по формуле:
Где: Q1 – количество теплоты полученное рабочим телом за один цикл от нагревателя, Q2 – количество теплоты переданное рабочим телом за один цикл холодильнику. Работа совершенная тепловой машиной за один цикл:
Наибольший КПД при заданных температурах нагревателя T1 и холодильника T2, достигается если тепловая машина работает по циклу Карно. Этот КПД цикла Карно равен:
Абсолютная влажность рассчитывается как плотность водяных паров (из уравнения Клапейрона-Менделеева выражается отношение массы к объему и получается следующая формула):
Относительная влажность воздуха может быть рассчитана по следующим формулам:
Потенциальная энергия поверхности жидкости площадью S:
Сила поверхностного натяжения, действующая на участок границы жидкости длиной L:
Высота столба жидкости в капилляре:
При полном смачивании θ = 0°, cos θ = 1. В этом случае высота столба жидкости в капилляре станет равной:
При полном несмачивании θ = 180°, cos θ = –1 и, следовательно, h < 0. Уровень несмачивающей жидкости в капилляре опускается ниже уровня жидкости в сосуде, в которую опущен капилляр.
Особенности ЕГЭ по физике: на что обратить внимание?
Чтобы подготовиться к ЕГЭ по физике с нуля, нужно, в первую очередь, обращаться к официальным источникам
Обратите внимание на задания из открытого банка ЕГЭ, которые есть на сайте ФИПИ. Там же можно найти кодификатор, из которого вы узнаете все темы, которые могут попасться на экзамене
Из лайфхаков:
- Во всех заданиях первой части ответом будет целое число или конечная десятичная дробь.
- Не забывайте пользоваться справочными материалами на экзамене
- Внимательно читайте задание, чтобы не запутаться и не поставить полное число, когда в описании требуется округлить полученную сумму до десятых.
Формулы по физике для ЕГЭ
Шпаргалка с формулами по физике для ЕГЭ
и не только (может понадобиться 7, 8, 9, 10 и 11 классам).
Записаться на занятия к репетитору.
Для начала картинка, которую можно распечатать в компактном виде.
А потом вордовский файл, который содержит все формулы чтобы их распечатать, которые находятся внизу статьи.
Механика
- Давление Р=F/S
- Плотность ρ=m/V
- Давление на глубине жидкости P=ρ∙g∙h
- Сила тяжести Fт=mg
- 5. Архимедова сила Fa=ρж∙g∙Vт
- Уравнение движения при равноускоренном движении
X=X0+υ0∙t+(a∙t2)/2 S=(υ2-υ02)/2а S=(υ+υ0) ∙t /2
- Уравнение скорости при равноускоренном движении υ=υ0+a∙t
- Ускорение a=(υ–υ 0)/t
- Скорость при движении по окружности υ=2πR/Т
- Центростремительное ускорение a=υ2/R
- Связь периода с частотой ν=1/T=ω/2π
- II закон Ньютона F=ma
- Закон Гука Fy=-kx
- Закон Всемирного тяготения F=G∙M∙m/R2
- Вес тела, движущегося с ускорением а↑ Р=m(g+a)
- Вес тела, движущегося с ускорением а↓ Р=m(g-a)
- Сила трения Fтр=µN
- Импульс тела p=mυ
- Импульс силы Ft=∆p
- Момент силы M=F∙ℓ
- Потенциальная энергия тела, поднятого над землей Eп=mgh
- Потенциальная энергия упруго деформированного тела Eп=kx2/2
- Кинетическая энергия тела Ek=mυ2/2
- Работа A=F∙S∙cosα
- Мощность N=A/t=F∙υ
- Коэффициент полезного действия η=Aп/Аз
- Период колебаний математического маятника T=2π√ℓ/g
- Период колебаний пружинного маятника T=2 π √m/k
- Уравнение гармонических колебаний Х=Хmax∙cos ωt
- Связь длины волны, ее скорости и периода λ= υТ
Молекулярная физика и термодинамика
- Количество вещества ν=N/ Na
- Молярная масса М=m/ν
- Cр. кин. энергия молекул одноатомного газа Ek=3/2∙kT
- Основное уравнение МКТ P=nkT=1/3nm0υ2
- Закон Гей – Люссака (изобарный процесс) V/T =const
- Закон Шарля (изохорный процесс) P/T =const
- Относительная влажность φ=P/P0∙100%
- Внутр. энергия идеал. одноатомного газа U=3/2∙M/µ∙RT
- Работа газа A=P∙ΔV
- Закон Бойля – Мариотта (изотермический процесс) PV=const
- Количество теплоты при нагревании Q=Cm(T2-T1)
- Количество теплоты при плавлении Q=λm
- Количество теплоты при парообразовании Q=Lm
- Количество теплоты при сгорании топлива Q=qm
- Уравнение состояния идеального газа PV=m/M∙RT
- Первый закон термодинамики ΔU=A+Q
- КПД тепловых двигателей η= (Q1 – Q2)/ Q1
- КПД идеал. двигателей (цикл Карно) η= (Т1 – Т2)/ Т1